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Abstract—Unmanned Underwater Vehicles (UUVs) have a
promising future to explore the polar regions. In this paper,
we present our progress on developing a self-contain inertial
odometry for under-ice navigation. Firstly, a microcontroller-
based hardware time synchronization for multiple devices is
demonstrated. Moreover, we present a new IMU, Doppler Ve-
locity Log (DVL) and Pressure dead-reckoning (DR) for state
estimation and a robust initialization approach for underwater
vehciels. Field trials have been conducted in Utqiagvik, Alaska in
March 2022 to gather multi-sensor data under the sea ice. In this
paper, we highlight the performance of our method by comparing
to the robot localization algorithm, a widely used open-source
localization algorithm.

Index Terms—Remotely Operated Vehicle (ROV), Under-ice
Navigation, Marine Robotics, Time Synchronization

I. INTRODUCTION

Arctic environment is under drastic changes [1], and the sea
ice affects the global biogeochemical cycle [2]. Our under-
standing of biogeochemical processes such as air bubbles [3],
basal ice melting [4], and the drivers for sea-ice algal bloom
[5] is still limited due to the lack of robust technology for
under-ice sensing. In recent years, UUVs have been proposed
as a potential candidate to collect under-ice measurements
[6]. Thanks to the modern sensors and sophisticated system
design, the UUVs have been used for exploring the limited-
access areas beneath the ice shelf, sea-ice and ice floes. One
significance advantage of using UUVs is that they could
produce a higher spatial coverage compared to ice-anchored
instruments and ice coring [7]–[9].

However, operation logistics (deployment and recovery) is
complicated when working with sea-ice for large UUVs (such
as the Icefin [9] and ARTEMIS [10]) since a relatively large
ice-tent and lifting mechanism are required. Nowadays, small
low-cost UUVs have been deployed in various underwater
applications like coral reef exploration [11] and terrain re-
construction [12]. Since most of these UUVs are originally
designed for open-water operation, significant modifications
are needed for under-ice operation [13].

Underwater state estimation is particularly challenging due
to the lack of GPS [14]. Traditionally, UUV localization relies
on expensive inertial navigation system (INS) and deployed
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acoustic transponders. Recent advancements in electronics has
significantly increased the accessibility of compact and afford-
able navigation sensors, such as Micro-Electro-Mechanical
System (MEMS) IMU, sonar and optical camera. To enable
robust perception and navigation for these challenging environ-
ments, the methods of using multi-sensors fusion [15] [16] has
shown promising outcomes. One critical task for sensor fusion
is time synchronization since the time difference between
sensor modalities will cause unreliable navigation results [17].

In this paper, we will report our progress in using a portable
ROV for under-ice sensing, and demonstrate the feasibility of
using small a ROV (0.7m long and 0.5m wide) for sampling
the under-ice environment. Our contributions are summarized
as follows:

• System modification and low-cost hardware time syn-
chronization for the portable ROV. To our knowledge,
this is the first work introduced hardware time synchro-
nization for various devices in the underwater domain.

• Tightly-coupled IMU-DVL-Pressure odometry is pro-
posed with derived on-manifold update equations.

• Validated the method by conducting under-ice missions
in polar regions.

The remaining paper is organized as follows. In Section
II, we review relevant works in the under-ice operation, time
synchronization and sensor-fusion with a focus on underwater
environments. ROV system upgrade, including sensor integra-
tion and multi-sensor time synchronization, will be presented
in Section III. The proposed new localization method is
introduced in Section IV. Under-ice field deployment has been
conducted with results shown in Section V, and we will discuss
conclusion and lessons learned in Section VI.

II. RELATED WORKS

Since the 21st Century, UUV-based under-ice explorations
have drawn increased attention because UUVs have increased
accessibility, can lower personnel risks, and can cover a wider
area compared to fixed instruments. Herein, several seminal
works in under-ice UUVs are reviewed. In 2015, a twin-hull
AUV, called SEABED [18], was deployed to obtain the 3D
topography the underside of floating ice floes [19]. Autosub is
another large-size AUV which is extensively used for under-ice
exploration. For example, in 2018, the Autosub Long Range
6000 AUV was deployed 500 m deep to measure the ice shelf
and seabed morphology [20]. More recently, seabed mapping



and water column assessment missions were carried out under
the Thwaite Glacier ice shelf using a Kongsberg HUGIN
AUV [21]. Although larger size AUVs have better endurance
and sensing capability, portable and affordable UUVs such as
Gavia AUV [22], REMUS AUV [23], gliders [24], low-cost
ROV [25] are also welcomed because they are easy to operate
(without ice camps or icebreakers). However, most of those
successfully deployed torpedo-shape AUVs were flying further
away from the ice surface at a constant depth. In contrast, this
paper presents our work on deploying a modified BlueROV-
2 to survey within 2 meters from the ice, aiming to collect
biogeochemical measurements at the ice-water interface.

Simultaneous Localization and Mapping (SLAM) is a pop-
ular field in robotics, which leverages multiple sensors to pro-
vide a better localization result compared to a dead-reckoning
algorithm based on inertial measurements. In addition, multi-
sensors SLAM has been increasingly applied to the underwater
domain by fusing motion sensors (e.g. IMU, DVL, Pressure
Sensor) and perception sensors (e.g. Camera, Bathymetric
Sonar, Imaging Sonar). The authors in [26] integrated DVL,
gyroscope and depth sensors into an EKF odometry that was
fed as motion prior inside the ORB-SLAM2 [27] for robust
sensing in the visual degraded environment. In [28], EKF-
based bathymetric SLAM using a multibeam sonar, Attitude
and Heading Reference System (AHRS), DVL, pressure sensor
was proposed. The method performs DR using a kinematic
model with measurement updates from motion sensors, then it
was corrected using the multibeam sonar submap registration.
Similar to the previous DR method, a Rao-Blackwellized parti-
cle filter (RBPF) SLAM using Forward Looking Sonar (FLS),
DVL and IMU was presented in [29]. SVIn2 [15] is a tightly-
coupled nonlinear optimization-based method integrated with
IMU, depth sensor, profiling sonar and stereo camera with
the capacities of robust initialization, image enhancement and
relocalization.

For multiple sensor fusion, precise time synchronization
between devices is crucial [17]. To get a robust and accurate
sensor fusion result, hardware level time synchronization is
needed to eliminate clock offset due to communication bus
buffer delay, and operating system (OS) scheduling. For an
application that can access Global Positioning System (GPS)
signal, pulse per second (PPS) was employed to synchronize
onboard computer and sonar [30]. The time synchronization
can be done either offline or online. For example, the VIRAL
multiple modalities dataset [31] performance offline time
offset calibration between camera and IMU using Kalibr [32],
which requires specific routines. In contrast, the frameworks
like OpenVINS [33] and VINS-Mono [34] are capable of
online calibration to make operation easier. For the robots
running in GPS-denied areas, e.g., underground, indoor en-
vironments and underwater, time synchronization is extremely
important. During the DARPA Subterranean Challenge, Team
CERBERUS utilized a microcontroller unit (MCU) for the
visual–inertial triggering [35]. For the indoor applications, one
used Single Board Computer (SBC) for conducting hardware
synchronization of different types of sensors [36] includ-

ing triggerable devices (e.g. IMU and Cameras) and GPS-
stamp devices (e.g. Lidars) that only accept National Marine
Electronics Association (NMEA) string and PPS. Another
example is VersaVIS [17], which not only used MCU for
triggering the visual-inertial system but also applied an EKF
to estimate the time offset between MCU and host. Because
non-triggerable devices like wheel odometers only produce
their timestamps based on host clock. Furthermore, sensor
time synchronization is also challenging for marine robotics.
Having time synchronized could be a great feature for datasets.
An underwater caves dataset [37] focusing on navigation
perspective containing multi-sensors is appealing, but no time
synchronization was provided. The AURORA dataset [38]
from the famous and reliable Autosub6000 AUV was time
synchronized, however, no detailed information is reported in
the paper. An underwater reconstruction dataset [39] applied
hardware synchronization but only for stereo cameras.

III. UNDER-ICE ROV UPGRADE

A. System Integration

A photo of the upgraded BlueROV-2 is shown in Fig. 1,
and the system diagram is displayed in Fig. 2. As shown in
Fig. 2, two lithium-ion battery packs (total of 500 Wh) were
enclosed in a single pressure housing. The battery packs can
be charged via a underwater connector without disassemble.
A Battery Management Board (BMB) was used to balance the
load on the battery packs, and a Power Monitor Board (PMB)
was integrated to track the current and voltage of the entire
system. Two DC-DC converters were integrated to provide 5V
and 24V for the instruments.

Fig. 1. The under-ice ROV modified from the BlueROV-2 and our prior work
[40]

The electronics in the low-level housing are remain un-
changed from the manufacturer, but we have customized the
electronics in the high-level housing, including a Jetson NX
Xavier SBC, a Arduino Zero MCU, an AHRS, an Internet
switch and a tether board. The Robotic Operating System
(ROS) was running on the Jetson to performance sensor
interface and data processing. The Arduino handles the time



synchronization among Microstrain AHRS, FLIR stereo cam-
era, Bluerobotics LED, Nortek DVL, the Jetson and the topside
laptop. All the onboard data was streamed to the topside using
a Bluerobotics tether board.

Fig. 2. The ROV system diagram

An Evologics 18/34 Acoustic Modem (shown in Fig. 1)
was installed to the vehicle to obtain georeferenced location
fix while the ROV is under the water. To characterize the
biogeochemical activities in the water column, a dissolved
oxygen optode and a chlorophyll sensor are integrated.

On the topside laptop, we have data (including sonar image,
camera images, and vehicle odometry) visualized to assist
ROV piloting. Meanwhile, the Evologics USBL that was
deployed in an ice hole provides online positioning result in
the user interface (SiNAPS 1). To account any clock drift on
the ROV and topside lapto, a GPS was attached to the laptop
and the data was logged simultaneously for aligning ROV data
to the global time.

B. Time Synchronization

Our time synchronization solution is created using a low-
cost MCU to support various devices as shown in Fig. 3.
Each device synchronization, besides the non-triggerable one,
can be separated into two parts, time keeping and trigger
in the Arduino and timestamp management in Jetson. The
stereo camera is configured in the primary-secondary mode
that the primary camera will be externally triggered while the
secondary camera will be triggered by the exposure signal
from the primary camera. In Arduino, a hardware timer
is configured in Pulse Width Modulation (PWM) mode to
generate jitter-free pulses to trigger the primary camera at
10Hz. The MCU also sends the trigger information includes

1https://evologics.de/sinaps

trigger timestamp and camera exposure time to Jetson through
a serial port. In Jetson, a ROS driver handles the timestamp
management in two stages, trigger initialization and timestamp
replacement. In the initialization stage, the Jeston intends to
find a constant sequence offset between the camera trigger
time and the camera data time. In this stage, the MCU is
configured to trigger the camera at 1Hz. Meanwhile, the
Jetson receives both trigger information (from the MCU) and
image data (from the camera) to check the sequence offset
between two messages until a consistent sequence offset is
observed. In the replacement stage, trigger will be restore to
the regular rate, i.e., 10 Hz. All the timestamps in the image
data will then be replaced by the aligned trigger timestamp
plus half of the camera exposure time. The primary and
secondary cameras will be executed timestamp management
using this ROS driver at same time in the same manner.

Fig. 3. Time synchornization diagram

The DVL trigger process is similar to the primary camera,
but at 8Hz. Both Bottom Track (BT) and Current Profiling
(CP) were enabled, and we configured the DVL such that
the CP is available after every 7 BT measurements. The
timestamp management for the DVL is done slightly different
than the camera, since BT and CP are coming sequentially
from the same data stream, but the sequence are updated
independently for the BT and CP messages. To successfully
align the timestamp message and data message during the
initialization, a unique DVL sequence is obtained by summing
the latest BT sequence and latest CP sequence. After con-
stant sequence offset between the DVL sequence and trigger
timestamp sequence is obtained, same procedure used for the
camera time replacement is applied (e.g. trigger restoration,
time compensation and replacement of aligned timestamp).

To time synchronize the Jetson and the Arduino, we pro-
gram the Arduino to generate PPS based on its system clock
using a hardware timer. The PPS timestamp is constructed
into an NMEA string and sent to the Universal Asynchronous
Receiver-Transmitter (UART) port on Jetson. To precisely
update time information of Jetson, we use a Network Time
Protocol (NTP) implemented software, chrony, to synchronize
the Jetson clock to a reference clock which is generated by
the gpsd daemon using the MCU NMEA string and PPS.

Our onboard Microstrain AHRS only accepts the GPS-
stamp method for time synchronization so the same PPS



signal from the Arduino is sent to AHRS. However, the
PPS timestamp is constructed following a specific format that
is required by the AHRS ROS driver for its internal clock
synchronization.

The topside laptop and Raspberry Pi (the original Blue ROV
computer) are connected with a tether board, they are both
time synchronized with Jetson using the NTP. The sonar is not
capable of hardware synchronization. Thus, the ros messages
are directly stamped with the Input/Output (IO) time when the
data has arrived at the host computer. The USBL is connected
to laptop with an Ethernet cable and NTP was also used for
time synchronization.

IV. NAVIGATION SYSTEM

The foundation of modern navigation solutions is DR [41],
which is typically further fused with other sensors to bound the
accumulated position drifts. The widely accepted DR method
is to integrate the measurements from several motion sensors
using an EKF. Some existing works use the vehicle system
model for prediction update, while the Multi-State Constraint
Kalman Filter (MSCKF) [42] multi-sensor fusion framework
utilizes an IMU model for the state prediction and camera
measurements for state update. In [43], a similar approach is
presented where the measurements from the USBL, DVL and
Pressure are used for update. However, they directly used DVL
raw beam measurements instead of 3-axis velocity to avoid
the adverse impacts from possible invalid velocities derived
from four beams. They also have set the DVL and IMU in the
same orientation, resulting in a simplified (but not general)
DVL update equation without considering any transformation
between this two sensors. Our work follows the same idea
from MSCKF [42], but we further integrated the DVL and
Pressure measurements to conduct tightly-coupled measure-
ment updates and have included the possible transformation
between DVL and Pressure sensor and the IMU. In our work,
we only used the bottom track measurements ( ROV’s body
frame linear velocity relative to the ice). Since our ROV was
kept close to the ice (less than 2 meters), reliable bottom lock
was obtained during the tests.

A. System State

The state vector follows the notation in [33] and is defined
as:

x =
[

Ik
G q̄⊤ Gp⊤

Ik
Gv⊤

Ik
b⊤
g b⊤

a

]⊤
(1)

where Ik
G q̄ [44] is the unit quaternion represents the rotation

from the global frame {G} to the IMU frame {Ik} at time
k. GpIk and GvIk are the IMU position and velocity with
respect to {G}. The vectors bg and ba describe the biases of
the measured angular velocity and linear acceleration from
the IMU respectively. We define x = x̂ ⊞ x̃, where x is
the true state, x̂ is estimation, x̃ is the error state, and the
⊞ operation maps the vector to a given manifold [45]. For

quaternions, we define the quaternion boxplus operation using
the left quaternion error as:

q̄ ⊞ δθ ≜

[
1

2
δθ

1

]
⊗ q̄ (2)

B. IMU Propagation

The state is propagated forward based on IMU measure-
ments of linear accelerations Iam and angular velocities
Iωm following generic nonlinear IMU kinematics model from
timestep k − 1 to k [46].

xk = f(xk−1,
Iam, Iωm,nI) (3)

where nI =
[
n⊤
g n⊤

a n⊤
ωg n⊤

ωa

]⊤
, ng and na are the

zero-mean Gaussian noise of the gyroscope and accelerometer
measurement, while nωg and nωa represent the random walk
bias noise for gyroscope and accelerometer respectively. The
estimated value and propagated covariance are:

x̂k|k−1 = f(x̂k−1|k−1,
Iam, Iωm,0) (4)

Pk|k−1 = Φk|k−1Pk−1|k−1Φ
⊤
k|k−1 +Gk−1QG⊤

k−1 (5)

where x̂k|k−1 denotes the estimated value at time k given the
measurements up to time k−1. Φk|k−1 and Gk−1 are system
Jacobian and noise Jacobian of the linearized system [42]. Q
is a discrete-time covariance matrix of IMU noise nI .

C. DVL Update

The DVL velocity measurement [47] is defined as:

zD,k = hD(xk) + nD

= I
DR⊤(IkG RGvIk + ⌊Ikω⌋×IpD) + nD (6)

where I
DR and IpD are the known DVL rotation and position

with respect to IMU frame. Ik
G R is the rotation from the global

frame to the IMU frame at time k. We have the measurement
noise nD ∼ N (0,RD). ⌊�⌋× is a skew-symmetric operation
that maps IMU angular velocity Ikω =

[
ωx ωy ωz

]⊤ ∈
R3 into:

⌊Ikω⌋× =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (7)

We linearize Eq. (6) at the current state with respect to the
current zero-mean error state for the EKF update.

z̃D,k = HD,kx̃k|k−1 + nD (8)

where HD,k =
[
H⊤

D,R 0 H⊤
D,v 0 0

]⊤
is the mea-

surement Jacobian, shown in Appendices. B, computed as
follows:

HD,R =
∂hD(�)

∂Ik
G R̃

= I
DR⊤⌊IkG RGvIk⌋× (9a)

HD,v =
∂hD(�)
∂GṽIk

= I
DR⊤Ik

G R (9b)



Then, we use this measurement model for EKF update with
the following equations.

x̂k|k = x̂k|k−1 ⊞Kk(zD,k − h(x̂k|k−1)) (10a)
Pk|k = Pk|k−1 −KkHD,kPk|k−1 (10b)

Kk = Pk|k−1H
⊤
D,k(HD,kPk|k−1H

⊤
D,k +RD)−1 (10c)

D. Pressure Update

We model the pz measurement of state GpI as:

zpz,k = hpz
(xk) + nP

= sIkG R⊤I
DRD

P R(PPin − PPk) + npz (11)

where s = [ 0 0 1 ] used for selecting third dimension
value, PPin = [ 0 0 P pin ]⊤ and P pin is the Pressure
measurement at the initial position, PPk = [ 0 0 P pk ]⊤

and P pk is the Pressure measurement at timestamp k, D
P R is

the known rotation from Pressure frame to DVL frame and npz

is zero-mean white Gaussian noises. To perform EKF update,
the linearized function is shown below:

z̃pz,k = Hpz,kx̃k|k−1 + npz (12)

where Hpz,k =
[
H⊤

pz,R
H⊤

pz,p 0 0 0
]⊤

is the mea-
surement Jacobian (check Appendices. C) list as:

Hpz,R =
∂hpz

(�)

∂Ik
G R̃

= −sIkG R⊤⌊IDRD
P R(PPin − PPk)⌋×

(13a)

Hpz,p =
∂hpz

(�)
∂Gp̃Ik

= [ 0 0 1 ] (13b)

E. System Initialization

The robust initialization method is critical for a good
navigation result. Some platforms can start the mission in a
stationary state, which is not always the case for marine robots
starts the mission in water and impacted by the waves and
currents. Therefore, in this section, we discuss our initializa-
tion procedures to extract the biases in gyro, acceleration, the
gravity vector, and the initial velocity and pressure.

To initialize the system in a generic case without time
synchronization, DVL and IMU timestamp are aligned by
detecting measurement spikes caused by a sudden vehicle
movement from its relatively static condition (e.g. drift with
currents). The vehicle motion in a small duration before the
alignment was assumed stationary so gyro bias was computed
by averaging the gyro measurements. Similarly, the average
of pressure measurements during this time is assigned as the
initial pressure P pin.

We need to remove vehicle acceleration (e.g. caused by
water flow and thrusters) and gravity effect from acceleration
measurements to get bias. We first select a short duration (e.g.,
2 seconds) after the alignment. Then, we estimate the vehicle
acceleration from the velocity measured by the DVL. Since
such DVL measurements are obtained when the vehicle is
moving, the DVL has a relative low noise-to-signal ratio. By

now, we can use the following equation [47] to estimate the
vehicle acceleration.

I â = ⌊Iω⌋×I
DRDv + I

DRDa− (⌊Iω⌋2× + ⌊Iω̇⌋×)IpD

(14)

where DVL velocity and acceleration are annotated as Dv and
Da respectively. Furthermore, estimated accelerations linearly
interpolated at IMU timestamps can be used for compensation.
Up to now, the gravity vector can be found easily since
the vehicle acted as standing still. For each measurement, a
rotation I

GR was constructed to remove gravity acceleration.
Finally, the acceleration bias was set to the average of the left
measurements since vehicle acceleration and gravity were well
compensated. The initial velocity GvI was estimated using Eq.
(6) by rearranging the velocity to the left side.

V. RESULTS AND ANALYSIS

A. Field Operation

Field tests were conducted in March 2022 in Utqiagvik,
Alaska on a flat landfast ice located about several hundred
meters off the coast. The ice thickness was about 1.5 meters.
As shown in Fig. 4, ROV was lowered through a rectangle
ice hole using straps with hooks at the end. The recovery was
done by manually driving the ROV through the hole, then, the
straps will hook onto the ROV for lifting.

Fig. 4. Field operation: Top-left panel shows the under-ice camera image;
Middle-left photo shows the ROV deployment; Bottom-left image presents
the ice keel image captured from a forward-looking camera; Top-right panel
depicts the ROV trajectory from the online odometry; Bottom-right panel
displays the acoustic returns from the ice keel using a forward-looking
imaging sonar.

The interval of the USBL position fix was configured at
5 seconds, while the AHRS was sensing at 200 HZ and the
DVL was triggered at 8 Hz. We have conducted a total of
4 dives on four different days (each dive lasts about 30-40



minutes) to survey the water under the sea-ice in a lawnmower
pattern, as shown in Fig. 4, where the the green path shows the
vehicle path and the white point cloud are the sea-ice surface
measured by the DVL. During the tests, we maintained the
ROV at about 1-2 meters away from the bottom of the ice for
imaging purpose. From the upward-looking camera (see Fig.
4), we observed directional striping features at the ice surface
which is different from the homogeneous air bubble features
observed in the freshwater ice [40]. Also, the ice keel was
observed both from a forward-looking camera and sonar as
displayed in Fig. 4.

B. Data Analysis

To quantify the performance of the proposed navigation
method, we compared the resulting position with the USBL
position fixes (ground truth) at the same global time. The
USBL’s raw data is filtered with internal parameters such
as accuracy, received signal strength indicator (RSSI), and
integraity to remove the noise data. Since our method do
not use magnetometer because its bad performance in polar
area, we have to align the estimated odometry with the USBL
fixes. To this end, an initial section of the data points was
selected and we applied the Umeyama Alignment [48] from
the evaluation toolbox evo [49] to align the path and the USBL
fixes.

(a)

(b)

Fig. 5. A top view of the position fixes (blue dots) obtained by the USBL
and the tracks (black tracks) estimated using the dead-reckoning algorithms.
The associated points between the dead-reckoning and the USBL position is
highlighted using the red dashlines.(a) USBL and our method; (b) USBL and
robot localization.

As shown in Fig. 5, our odometry implemented from
Section IV and robot localization odometry both fused DVL
and IMU data compared with the position fixes obtained from

the USBL. The correspondences (red dash-lines) show the
Euclidean distance between the USBL position fixes and the
estimated path at the same timestamp. In Fig. 6, we present the
distance in x and y direction between two connected points,
one from the USBL and one from the estimated odometry. In
Fig. 6, we indicated the data points used for path alignment
in red. As a result, the position differences are relatively
small in this region. To compare the performance of our
method and the robot localization, we computed the Root
Mean Square Error (RMSE) in the X-axis and Y-axis. As a
result, our tightly-coupled DVL-IMU odometry produced a
better performance than the robot localization, lower RMSE
and smaller maximum error. Noted that, our implementation of
odometry did not use Eq. 9a and 13a for the orientation update
because the performance became worse. The main reason may
be the inaccurate extrinsic calibration between DVL and IMU.

(a)

(b)

Fig. 6. Position error between the USBL position fixes and the estimated
tracks in X-axis and Y-axis. (a) Ours; (b) robot localization

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have presented an upgraded portable
ROV [40] for under-ice environment sampling. Hardware time
synchronization was integrated for multiple devices including
sensors and computer systems to provide reliable sensor-
fusion navigation results. The collected data from the field
work revealed arctic ice has more significant features than
freshwater ice, not only the pattern on the ice surface but also
the morphology of the ice keel. A novel DVL-IMU-Pressure
tightly-coupled odometry has been presented with detailed
math derivation for robot state estimation. The algorithm is



evaluated by comparing to the widely used robot localization
method, and improvement was found.

Through the field work, we have also gained experience in
working in extreme conditions (e.g., -30 degC). In the field, we
found that vacuum test is extremely hard in the cold weather
using a hand pump so an electronic pump is highly recom-
mended. Also, the polyurethane underwater cables become
stiff and bending the cables will have a chance to pull out
the end cap from the housing or break the cable jacket. We
also recommend to keep the vehicle under water to prevent
from flash frozen which may jam the thrusters and control
surfaces. Therefore, hovering capability will be a great feature.
Currently, we are integrating the visual measurement into the
presented method to reduce the drift. Leveraging the state-of-
the-art MSCKF [33] framework, online extrinsic calibration
between multi-sensor is also in progress. Furthermore, sonar
images could also provide additional measurements fused into
the established localization framework.
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APPENDIX A
USEFUL PROPERTY

We define perturbation on rotation matrix R ∈ SO(3) [44]:
I
GR ≈ (I3 − ⌊IGθ̃⌋×)IGR̂ (A.1)

Anti-Commutativity of the skew-symmetrix matrix [44],
given two vectors a,b ∈ R3:

⌊a⌋×b = −⌊b⌋×a (A.2)

APPENDIX B
DVL UPDATE

DVL measurement Jacobian related to rotation:

HD,R

=
∂hD(�)

∂I
GR̃

≈ lim
δIGθ→0

I
DR⊤((I3 − ⌊δIGθ⌋×)IGRGvI + ⌊Iω⌋×IpD)− hD(�)

δIGθ

= lim
δIGθ→0

−I
DR⊤⌊δIGθ⌋×I

GR
GvI

δIGθ

= lim
δIGθ→0

I
DR⊤⌊IGRGvI⌋×δIGθ

δIGθ

= I
DR⊤⌊IGRGvI⌋× (B.1)

DVL measurement Jacobian related to velocity:

HD,v

=
∂hD(�)
∂GṽI

≈ lim
δGvI→0

I
DR⊤(IGR(GvI + δGvI) + ⌊Iω⌋×IpD)− hD(�)

δGvI

= lim
δGvI→0

I
DR⊤I

GRδGvI

δGvI

= I
DR⊤I

GR (B.2)

APPENDIX C
PRESSURE UPDATE

Measurement Jacobian related to rotation:

Hpz,R

=
∂hpz

(�)

∂I
GR̃

= lim
δIGθ→0

s(exp(⌊−δIGθ⌋×)IGR)⊤I
DRD

P R(PPin − PPk)− hpz (�)

δIGθ

= lim
δIGθ→0

sIGR
⊤ exp(⌊−δIGθ⌋×)−1I

DRD
P R(PPin − PPk)− hpz

(�)

δIGθ

≈ lim
δIGθ→0

sIGR
⊤⌊I3 + δIGθ⌋×I

DRD
P R(PPin − PPk)− hpz

(�)

δIGθ

= lim
δIGθ→0

sIGR
⊤⌊δIGθ⌋×I

DRD
P R(PPin − PPk)

δIGθ

= lim
δIGθ→0

−sIGR
⊤⌊IDRD

P R(PPin − PPk)⌋×δIGθ
δIGθ

= −sIGR
⊤⌊IDRD

P R(PPin − PPk)⌋× (C.1)


