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started with known scenario (known environment and known
sensor performance, e.g., in [7]) and partially unknown condi-
tion (unknown environment with known sensor performance,
e.g., in [8] and [9]). In recenty years, the emphasis started to
expand into fully unknown condition (unknown environment
and unknown sensor performance, e.g., in [10] to [11]) and
multi-robot operations e.g., in [13] to [15]. Detailed surveys
about the progress on CPP development are available in [4] to
[6]. As mentioned in the literature, the CPP problem for UUVs
is still challenging due to the unknown in vehicle performance,
e.g., navigation uncertainty, and the performance of perception
sensors, e.g., varied sonar swath width [10], [11]. Therefore,
an online path-planner like the ones presented in [9] to [11]
is needed to fulfill the coverage goal.

In this paper, we will present an online CPP for UUV-based
seafloor mapping survey using an interferometric sonar. The
CPP will update the UUV’s waypoint list intermittently based
on the coverage situation that changes during the mission and
an inverse-sonar model that provides potential coverage gain
and confidence gain on candidate transects. The overall goal
is to help the UUV to achieve the desired coverage ratio
at reduced total traveling distance compared to conventional
boustrophedon path. The main contribution of this paper is
summarized as follows,

• The paper presents an CPP algorithm that performs
intermittent mission update for the UUV, which lowers
the real-time computation requirement.

• The parameters in the CPP algorithms are easy to deter-
mine. Most of the parameters could be randomly picked,
e.g., the initial waypoint, or automatically calculated, e.g.,
the expected swath width.

• The transect is not limited in one direction. Instead it
could be either zonal or meridional, which allows us
to include additional planning factors, e.g., the adverse
effects posed by the ocean current.

The remaining content is organized as follows. We will
introduce the problem and all the nomenclature in Section

Abstract—Seafloor s urvey i s a n i mportant p ractice f or both 
defense and scientific p urposes. O ften t ime, w e c ould r efer the 
seafloor s urvey m ission t o a s a  c overage p ath p lanning (CPP) 
problem where the robot has to explore all the points of an 
area. In this paper, we propose a new online CPP algorithm 
for a UUV equipped with an interferometric sonar that has 
inherent problem of nadir gap and changing swath width. The 
proposed algorithm will account for the above two factors, and 
schedule new waypoints for the UUV intermittently. The way-
points are determined based on an objective function quantifying 
the potential measurement accuracy and information gain. We 
present the algorithm validation in a simulated environment with 
a 6DOF REMUS AUV model with an actual bathymetric map 
of Narragansett Bay, Rhode Island. The proposed algorithm is 
compared to boustrophedon coverage path at different inter-
distances. In the result, we found advantages of the proposed 
algorithm in terms of total path length to fully explore a 200 by 
500 meters rectangular workspace.

Index Terms—Unmanned Underwater Vehicle, autonomy, cov-
erage path planning, interferometric sonar, seafloor mapping.

I. INTRODUCTION

Seafloor s urvey i s a n i mportant p ractice f or d efense and
scientific p urposes, e .g., n aval m ine-countermeasure [ 1] and
seabed habitat and sediment studies [2]. Compared to manned
ship surveys, unmanned underwater vehicles provide an alter-
native approach that is effective in expense, safety and data
quality [3].

Often time, we refer the seafloor s urvey t o a s a  coverage
path planning (CPP) problem where the robot has to explore
all the points of an area. CPP is a common problem in robotic
research where the robot needs to find t he r oute t o cover
every point in an assigned area [4]. Over the years, CPP
problem has been studied extensively for a wide variety of
applications, e.g., house cleaning, lawn mowing, agriculture
monitoring, and underwater explorations. The research focus
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2. After that, we will present the CPP algorithm in detail
in Section 3. In Section 4, we show the preliminary result
obtained in a simulation environment where 6 DOF REMUS
AUV model and an actual terrain map are used. The results ob-
tained from the proposed CPP are compared with conventional
boustrophedon path at different inter-distances. We conclude
this paper and discuss our future work in Section 5.

II. PROBLEM STATEMENT

Herein, we define our workspace, M , is gridded into cells.
For each cell, Mx,y with subscript denoting the cell’s location,
we define two observation values, the observation state Ox,y

and the observation confidence Cx,y . Initially, the observation
state and the observation confidence are all set to zero for all
cells.

The UUV carries a sonar that scans the workspace during
the mission. The sonar swath varies due to the elevation of the
seafloor. In each sonar swath, we obtain a group of observed
seafloor points relative to the vehicle. Then, we could use
the transformation matrix and the vehicle pose information
to convert them into an earth-fixed frame. By comparing a
point’s x and y coordinate, we could identify related cell in
the workspace enclosing each point.

If there is a sonar point, Pk, made in a cell, then the
cell’s observation state Ox,y will become 1, meaning observed.
Meanwhile, the observation confidence of the cell Cx,y is also
updated using Equation 1 where Sx,y(k) denotes the sensing
confidence of the k-th measurement collected inside the cell
Mx,y

Cx,y = 1−
k∏

i=1

(1− Sx,y(Pk)) (1)
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R2
x

R2
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Rz
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(2)

The sensing confidence curves are different for each sonar.
In our case, we used an interferometric sonar. For the inter-
ferometric sonar, it has two swaths obtained from the two
transducers installed on two sides, as shown in Figure 1.
For each sample, we denote the swath on the port and on
the starboard side to be Lp and Ls, respectively. The value
is determined by the farthest point and the nearest points.
These parameters are later used in the coverage path planning
software.

Fig. 1. Two swaths from an interferometric sonar.

For each swath, the confidence curve is determined based on
the signal-to-noise ratio presented in [16]. The overall equation
is presented in Equation 2 where Rx denotes the cross-track
distance between the sonar point and the UUV, and Rz denotes

the vertical distance between the UUV and the sonar point. The
values are determined by matching the signal-to-noise ratio
from [16]. In each swath, we limited the maximum confidence
to be 0.9. In Figure 2, we show the confidence curve versus
cross-track range and the altitude. The bottom plot depict a
cross-section profile of the surface at altitude of 1.5m.

Fig. 2. Top: sensing confidence versus altitude and transversal distance;
bottom: sensing confidence over 0 to 10 meters at 1.5 m altitude.

III. CPP ALGORITHM

The CPP program runs once the UUV has reached the
last waypoint on the list. There are three steps in the CPP
algorithm. It will first generate the waypoints for all candi-
date transects. Then, it will quantify the ”reward” for each
candidate. After the comparison, the CPP will select the path
with the highest reward and transmit it to the UUV’s operating
system.

Figure 3 demonstrates the process of generating candidate
waypoints. Overall, there are n possible zonal transects, and m
possible meridional transects. The distance between adjacent
transects is ∆n and ∆m. The user could select the adjacent
distance freely. A smaller value will result in more candidates
and also more computational time. Here, we use the default
value, 1 meter, for the transects in both directions. For each
candidate transect, the program will shorten it if possible. For
example, on the j-th transect in Figure 3, the program predict
the possible coverage area based on the minimum swath width
observed during the mission, min(Ls) and min(Lp). Transect
segment in the rectangular region with all the cells observed
before will be excluded. As a result, a shorter transect will be
obtained with two waypoints located at the end of the reduced
transect line.

The next step is to quantify the ”reward” of the transect.
The CPP program will assume that the UUV will travel to
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the nearest waypoint then follow the transect line moving
towards the second waypoint. During this planned travel, the
CPP program will predict the possible coverage area, Aj ,
by assuming the predicted sonar swath width equal to the
minimum observed width, min(Ls) and min(Lp). The reward
consists of two parts, coverage gain (CG) reward and coverage
confidence (CC) reward.

Fig. 3. A sketch demonstrating the waypoint generation process. The gridded
map presents the workspace, the black grid indicates the current vehicle
position, the red and blue lines presents two examples of candidate transects.
The gray area presents the observed cells. The blue and red areas present the
predicted sonar coverage, Aj , for corresponding transects. The starboard and
port side area may have different widths.The two points on the transects show
the final candidate waypoints, and the arrows indicates the vehicle’s desired
moving trajectory for each transect.

CGj =

∑
Ox,y

Dj
|∀x, y ∈ Aj (3)

The coverage gain reward is defined to be the total number
of possible new observed grids divided by the total travel
distance when tracking the candidate waypoints. Equation 3
presents the math expression where the superscript, j, denotes
the transect index and Dj is total distance from the UUV’s
current location to the nearest waypoint plus the transect
length. As shown in Equation 4, the confidence gain reward
is defined as the total sensing confidence on the unobserved
cells that are inside the possible coverage area, Aj .

CCj =
∑

Ox,y ∗ Sx,y(P̂k) |∀x, y ∈ Aj (4)

After the CPP algorithm has estimated the rewards for all
the candidate transects, it will rescale CC and CG to 0-100.
Then, it will select the most rewarding transect, as shown
in Equation 5 where the subscript, s, denotes the scaled
values, WG and WC are the weights defined by users. We
constrain the sum of the weights to be one. The two waypoints
associated with the transect j∗ are the desired waypoints for
the UUV to follow.

j∗ = argmax(WG ∗ CGj
s + WC ∗ CCj

s) (5)

IV. PRELIMINARY RESULTS

The developed CPP algorithm was evaluated in a simulation
environment with a 6-DOF REMUS AUV model and a 1-m

resolution Digital Terrain Map (DTM) that is interpolated from
the 30-m resolution bathymetric map of the Narragansett Bay,
Rhode Island. The waypoint tracking of the UUV was realized
using the line-of-sight guidance law. The localization error
was not introduced because the CPP updates the waypoint
intermittently. Therefore, we assume the UUV could come to
the surface for GPS fixes or receive geo-referenced location
estimates occasionally from acoustic localization instruments,
e.g., the LBL, SBL or USBL. Using these information, the
UUV could back propagate the trajectory and obtain a rela-
tively accurate geo-location for seafloor surface measurements,
hence, minimizing the effects caused by the poor navigation.

In the simulation, we constrain the UUV to move at a
constant depth of 10 meters and a constant speed of 1 m/s. The
interferometric sonar measurements are simulated using a ray
tracing sonar model. In the model, we used the actual sonar
parameters, e.g., the field-of-view, the maximum profiling
range, and ping rate, which are determined from the sonar
specification or found during the initial sonar testing. The
swath to altitude ratio was found about 8:1 during our initial
sonar testing trials with a boat.

The simulated workspace is 200 m by 500 m with seafloor
depth at between 30 to 40 m. In the simulator, we first ran
8 reference missions with boustrophedon patterns at different
inter-distances, ∆d, from 10 m to 45 m. Then, we ran three
missions with the CPP algorithm with reward weights. For
these runs, we set the desired coverage ratio to be 99.9%.
When the UUV is solely driven by the CG, it will select
the transects with the highest newly observed grids regardless
of the confidence level of the sample. In contrast, the CC
will account for the sensing confidence for the possible newly
observed cells, which are derived from a sonar uncertainty
model introduced in Section II.
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Fig. 4. Comparison of final coverage ratio versus the total traveling distance.
Red: offline boustrophedon missions; blue and black: online CPP missions.

Figure 4 shows the final coverage ratio versus the total
path length (coverage-distance-ratio) for all simulation runs.
The coverage ratio is computed by dividing the number of
total observed cells (1m by 1m) by the total number of cells

Authorized licensed use limited to: University of Rhode Island. Downloaded on December 05,2023 at 04:00:54 UTC from IEEE Xplore.  Restrictions apply. 



in the workspace which is 100,000 in our simulation. The
red rounded markers show the results from pre-programmed
boustrophedon coverage missions while other markers show
that from online CPP algorithms with noted weight settings in
the zoom-in view. From the result, we observe that the final
coverage ratio in pre-programmed boustrophedon missions
increases as the inter-distance between consecutive transects
decreases, which follows a logarithm trend. As shown in the
figure, three coverage missions with the proposed method all
have a final coverage ratio over 99.9%, the desired value.
Meanwhile, we found the proposed method over-perform the
boustrophedon approach that the total path length of the
boustrophedon missions with final coverage ratio exceeding
99.9% are almost two times more.

Mission time [sec]

Cx,y

Fig. 5. Final coverage confidence map in the online CPP mission with
WG = 1. The red crosses present the waypoint, grey-scale track shows the
vehicle trajectory with respect to mission time, the green dashline shows the
workspace, and the background color indicates the sensing confidence in grids.

As shown in Figure 4, small difference in coverage-distance-
ratio is observed due to the weight changes. Therefore, we fur-
ther compare the overall sensing confidence in the workspace
from all the online CPP missions. For each mission, we com-
puted the sensing confidence in each grid using Equation 1.
Figure 5 shows the final sensing confidence in the workspace
for the online CPP mission with WG = 1.

In Fig. 6, we show the histogram of the sensing confidence
of the workspace from different simulation runs with online
CPP. Because good coverage are obtained with the online CPP,
the majority of the cells have the sensing confidence over
0.99. Slightly difference in the distributions of the sensing
confidence less than 0.99 are found in Fig. 6 In the zoom-
in view, the dash-lines show the averaged sensing confidence
for all the cells that have sensing confidence less than 0.99
in individual missions. Based on this metric, we found the

mission with equal weights for WC and WG has the highest
mean confidence as the green dash-line is closer to 1. In con-
trast, when WC = 1, the mission has the lowest mean sensing
confidence that the dash-line is under 0.8 and the histogram
has a wide and scattered distribution between 1 and 0.2. Both
figures, Fig. 4 and 6, indicate that coverage gain, defined
in Equation 3, has more influence on the overall coverage
mission performance. But including the coverage confidence
in addition to the coverage gain, defined in Equation 4, will
slightly improve the mission as the green marker has a smaller
total distance shown in Fig. 4 and a higher mean sensing
confidence shown in Fig. 6. Excluding the coverage gain
component in the objective function will increase the overall
mission time and lower the sensing confidence as indicated in
Fig.4 and 6.

WC = 1
WG = 1

WC = WG = 0.5

Fig. 6. Histogram of the final mapping confidence of the workspace. The bin
size is 0.01. The dash-lines presents the averaged sensing confidence for the
grids that have confidence less than 0.99.

V. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a new online coverage path
planning algorithm using an objective function. The objective
function is designed to account for the information of coverage
gain and coverage confidence. By selecting the maximum
reward transect using the objective function value, the CPP
guides the UUV to cover the workspace with a high sensing
confidence.

The proposed algorithm has been evaluated in a simulated
environment where the modeling modules are implemented
using actual specifications for the sonar, UUV, and the seafloor.
We compared the results from the proposed CPP method and
the conventional boustrophedon planning approach. Compared
to the boustrophedon pattern, the UUV could cover 99.9% of
the 200m-by-500m workspace using about 50% time with our
algorithm. We have also found that the weight assignment
in the objective function will affect the overall coverage
performance. From the comparison, we found assigning equal
weights produced the best results, about 25% faster and 5%
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more confidence than the mission only considered the coverage
confidence.

Development is still undergoing. In a real world mission,
sonar processing and UUV navigation algorithms are needed.
These algorithmic development will be evaluated using the
sonar data sets with ground truth localization data and seafloor
topography data. We are currently conducting field trials on
collecting the data set. The sonar will be integrated onto the
UUV during the fall with testing trials in March. Final CPP
test will be conducted in spring/summer 2021 in Narragansett
Bay, Rhode Island, USA.
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